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Abstract

The growth of potable reuse as a planned water supply strategy
has led to an increased focus on the presence and significance
of trace chemical contaminants. By the use of reclaimed
wastewater as a source, potable reuse projects require serious
consideration to be given to the range and character of chem-
icals which may be present and may pose unacceptable risks to
public health if not properly managed. The first step, required to
assess and manage risks, is to consider the range of chemical
contaminantswhichmay be present. Although it is impossible to
derive an exhaustive list, it is useful to consider broad categories
and the specific types of challenges that may be posed by the
chemicals within those categories. Such a broad categorisation
of chemical contaminants is presented in this review and pro-
vides the basis for initial consideration by those tasked with
assessing the water quality and treatment requirements of a
potable reuse project. Chemicals, which may potentially be of
concern in potable reuse projects, are diverse in terms of their
(anthropogenic or natural) source, chemical characteristics and
their likely human toxicity. Public health risk assessments are
further complicated by the inevitable presence of unidentified
chemicals and potential impacts of ‘mixture effects’ on the
overall toxicity of complex, low-concentration chemicalmixtures.
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Introduction
Growing water scarcity and the threat of drought-related
water shortages are leading many cities to consider the
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opportunities associated with supplementing conven-
tional drinking water supplies with appropriately treated
reclaimed water [1,2]. This practice, known as ‘potable
reuse’, has been formally adopted on a large scale in
countries including the USA, Australia, South Africa and
Namibia. Furthermore, potable reuse occurs informally
in thousands of cities, where raw drinking water is
sourced from surface waters impacted by effluent dis-
charges from the wastewater treatment plants upstream
[3]. Such practices are increasingly being recognised and
referred to as ‘de facto potable reuse’ [4,5].

Despite the global prevalence of de facto potable reuse,
it is generally considered that traditional drinking water
standards identifying ‘safe’ water quality are insufficient
for potable reuse of reclaimed water [6]. Compared with
conventional water sources, reclaimed water and potable
reuse may introduce a number of additional risks related
to chemical contaminants, which need to be considered
[6]. These include chemicals that may be associated
with the wastewater source [7], chemicals which may be
formed during conventional and advanced treatment
processes (e.g. disinfection byproducts) and chemicals

that may be released from aquifer storage or distribution
system materials as a consequence of treated reclaimed
water quality.

Chemicals which may be of concern in potable reuse
scenarios include a wide range of naturally occurring and
synthetic, organic and inorganic species. Some key clas-
ses of chemical hazards include heavy metals, synthetic
industrial organic chemicals, pesticides or their metab-
olites, algal toxins, radionuclides, pharmaceuticals,
oestrogenic and androgenic hormones, perfluoroalkyl

substances, nanoparticles and disinfection byproducts.
Attempts, such as this, to categorise water quality con-
taminants are always imperfect because the assigned
categories are never mutually exclusive. Nonetheless,
this categorisation of potable water chemical contami-
nant classes is adopted here to provide discussion and
insights regarding important chemical hazards.
Heavy metals
Heavy metals may be present in municipal wastewater
at concentrations reaching the mg per litre level as a
result of industrial discharges to sewers. Some heavy
metals such as lead, cadmium, chromium and mercury
have been associated with human health concerns at mg
per litre concentrations in drinking water. These
www.sciencedirect.com
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chemicals have been subjects of regulatory control in
public drinking water supplies for many decades, and
these same regulatory requirements are equally appli-
cable to potable reuse scenarios. Most heavy metals tend
to be lipophilic and therefore partition extensively to
sludge during wastewater treatment [8]. Consequently,
most concerns regarding heavy metals have been in
relation to disposal and reuse of wastewater sludges [9].

Concerns relating specifically to residual concentrations
in reclaimed water have been focused primarily on risks
associated with irrigation of edible crops, which may
lead to elevated human exposure due to bio-
concentration [10,11]. Recent work has allayed fears
that heavy metals present in (non-potable) reclaimed
water may induce detrimental effects on fabrics during
household machine clothes washing [12]. Some potable
reuse practices involve storage of reclaimed water by
aquifer recharge [13,14]. In such cases, risks of potential
contamination of treated water, by dissolution of natural

geochemical substances, should be considered.
Synthetic industrial organic chemicals
Depending on the catchment area and the extent of the
trade waste program to control chemicals at the waste-

water source, a very wide range of synthetic industrial
chemicals and byproducts are often measurable in urban
municipal wastewater treatment plant effluents at ng
per litre to mg per litre levels. Examples include plasti-
cisers [15,16], biocides [17,18], surfactants [19], dioxins
[20], flame retardants [7,21], dyes [22], polychlorinated
biphenyls [23] and phthalates [24,25]. For many of
these chemicals, prolonged exposure is known to pre-
sent chronic health risks including cancer [26e28], and
many are environmentally persistent [29]. The ability of
advanced treatment processes to control a range of
pollutants which can be at transiently elevated con-

centrations is a current area of research interest. One
such chemical which has presented particular challenges
in some circumstances is 1,4-dioxane, which is used
both as a solvent and as a stabiliser for other organic
solvents. 1,4-Dioxane is a known groundwater contam-
inant in some regions [30,31], but it also presents
particular difficulties for control in some potable reuse
projects because of its poor removal by reverse osmosis
treatment [32]. Consequently, 1,4-dioxane has been a
major driver for the increased application of advanced
oxidation processes for potable reuse [33,34].
Pesticides
A variety of chemical pesticides, including herbicides and
insecticides, have been detected in municipal waste-
water effluents at ng per litre concentrations [35,36].

Pesticides may enter municipal wastewater systems by a
variety of means, including stormwater influx and illegal
direct disposal to sewage systems. Washing domestic pet
dogs with insecticide solutions is a known pathway for
these chemicals to be discharged to municipal sewers
www.sciencedirect.com
[37]. Additional routes of unknown significance include
washing fruits and vegetables before household con-
sumption, insect repellents washed from human skin
and/or washing clothes and equipment used for applying
pesticides. Because pesticides have been specifically
designed or selected for their detrimental effects on a
range of biological species, they present an obvious focus
for concern regarding health risks from human exposure

and efficacy of biological treatment processes.

Cyanotoxins
Cyanotoxins such as microcystins, nodularins, cylin-
drospermopsin and saxitoxins are all produced by fresh-
water cyanobacteria (blue-green algae). Under suitable
conditions, cyanobacteria may grow in untreated or

partially treated wastewaters, producing these and other
toxins [38].Numerous cyanotoxins have been implicated
as having serious impacts on human and animal health by
the consumption of contaminated water. Many of these
toxins are hepatotoxic, and some are neurotoxic.

Radionuclides
Radionuclides, such as radioactive isotopes of strontium,
cobalt, caesium, uranium and selenium, may enter
sewage by natural runoff or as a result of medical or in-
dustrial usage [39e41]. In the treatment of some public
water supplies, radium is removed from drinking water
by coagulation, and the concentrated sludge may be
transferred to sewage systems. Commercial laundry
detergents may also be a source of radiological contam-
ination of wastewaters [42]. Radionuclides are carcino-
genic and mutagenic substances.
Natural and synthetic steroidal hormones
Natural steroidal hormones such as oestradiol, oestrone
and testosterone are excreted to sewage by people.
During the last three decades, natural steroidal hor-
mones have been widely implicated in a range of

endocrinological abnormalities in aquatic species that
are affected by sewage effluent [43,44]. Related impacts
via human endocrinological pathways have been widely
postulated and are sources of public concern regarding
drinking water quality [45,46]. However, human health
risk assessments have generally concluded that these
chemicals are unlikely to cause public health impacts at
concentrations normally encountered in reclaimed
wastewaters [46e48]. Reported removals of steroidal
hormones by conventional sewage treatment plants have
been variable, but removal to below current analytical

detection limits (approx. 1 ng/L) is commonly observed
in well-performing plants [49,50]. Further removal may
be achieved by advanced treatment [51].
Pharmaceuticals
Dozens of pharmaceutical substances (and their active
metabolites), along with illicit drugs, have been detec-
ted in treated and untreated municipal wastewaters
Current Opinion in Environmental Science & Health 2019, 7:76–82
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globally [52e54]. These chemicals are excreted to
sewage by people and direct disposal of unused drugs by
households [55,56]. Because pharmaceuticals are
designed to instigate biological responses, their inherent
biological activity and the diverse range of compounds
identified in sewages (and the environment) have been
cause for considerable concern. Specific public health
concerns have not been identified for most classes of

drugs at ambient drinking water concentrations, but
issues regarding the presence of antibiotics and the role
they may play in antibacterial resistance proliferation
have received much attention [57,58]. A broad range of
pharmaceutically active compounds have been reported
in drinking waters as a consequence of unplanned in-
direct potable reuse [59].
Perfluoroalkyl substances
Perfluoroalkyl substances (PFAS) such as perfluor-
ooctanoic acid, perfluorohexane sulfonate and perfluor-
ooctane sulfonate are persistent and toxic chemicals
that have recently emerged as drinking water contami-
nants of concern. Although much of the focus has been
directed to these three examples, more than 400 PHASs
have been identified in the aquatic environment [60].

They also arise from the breakdown of fluorotelomer
alcohols, which are widely used in consumer products
such as greaseproof food wrappers and stain-resistant
carpet treatments. A range of perfluorinated chemicals
have been widely reported in municipal wastewater ef-
fluents [61,62]. Owing to the presence of precursor
compounds in wastewater treatment plant influents,
additional PFAS is known to be produced during bio-
logical wastewater treatment [63,64]. Water treatment
trials have shown that conventional carbon adsorbents
are only partially effective for the removal of PFAS in a
potable reuse scenario [65].
Nanoparticles
An important group of emerging environmental con-
taminants of concern is nanoparticles or nanomaterials
[66]. These are commonly defined as particles between

about 1 and 100 nm in diameter that show properties
that are not found in bulk samples of the same material.
Nanoparticles isolated from wastewater treatment
plants have been found to be composed of 70%e85%
carbon and low amounts of oxygen, heavy metals and
other elements [67]. It is apparent that the municipal
wastewater loads of some nanoparticles, such as TiO2

and ZnO, may exhibit seasonal variability [68]. This is
assumed to be partially a consequence of these nano-
particles being used in functionalised products, such as
sunscreens and moisturising lotions, which have sea-

sonal use patterns [68]. The toxicological concerns for
nanoparticles are related not only to their chemical
composition but also to physical parameters including
particle size, shape, surface area, surface chemistry,
porosity, aggregation tendency and homogeneity of
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dispersions [66]. Furthermore, nanoparticle bioavail-
ability and toxicity may be influenced by transformation
processes caused by other substances, such as humic
acids or sulphides, present in the wastewater treatment
plant [69].
Disinfection and oxidative byproducts
Disinfection and chemical oxidation by ultraviolet (UV)
radiation and chemical oxidants is practiced to ensure
pathogen inactivation and to reduce concentrations of
some target chemical contaminants in reclaimed water.
These processes induce chemical reactions and

transformations and thus are well-known to produce
chemical byproducts [70,71]. As chlorine-based disin-
fection processes are used in potable reuse, well-known
chlorination disinfection byproducts such as tri-
halomethanes and haloacetic acids also commonly occur
[72].

In a potable reuse scenario, the combination of UV and
hydrogen peroxide is particularly relevant because it is
now used as an important contaminant barrier in a
number of large potable water reuse projects [73]. Other

UV-based advanced oxidation processes, such as UV/free
chlorine and UV/persulfate, are also rapidly emerging as
attractive approaches for the removal of trace organic
contaminants. Each of these processes produces
distinctly different concentrations and characters of
byproducts, as a consequence of the different reactive
intermediates formed [74,75]. Alternative potable reuse
treatment trains, such those that involve ozonation
followed by biological activated carbon, are also prone to
the formation of disinfection byproducts [76,77].

As a disinfection byproduct, N-nitrosodimethylamine
(NDMA) presents a number of significant challenges for
potable reuse. These stem partially from this contami-
nant’s status as a suspected human carcinogen with a
very high potency (i.e., a high cancer slope factor)
[78,79]. This has led to variable water quality objectives,
which in some jurisdictions require NDMA concentra-
tions <10 ng/L. Although NDMA has been associated
with many water and wastewater systems, potable reuse
systems may be particularly problematic if elevated
levels of ammonia are present. Chloramination is the

most common process that results in formation of
NDMA during water and wastewater treatment [80].
However, ozonation of wastewater can also produce high
concentrations [80]. Furthermore, advanced oxidation
processes may degrade larger molecules to smaller sub-
stances, which can subsequently act as precursors for
additional NDMA production during advanced water
treatment [77]. Challenges encountered by NDMA, in
particular, have led to efforts towards the development
of an inline detection system for this compound and
other N-Nitrosamines [81,82]. It has been observed

that, as potable reuse becomes increasingly important
www.sciencedirect.com
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for drinking water supply, NDMA formation and miti-
gation strategies will become increasingly more impor-
tant [80].
Conclusions
The various classes of chemical contaminants identified
in this short review represent those for which most
attention is currently paid in regard to potable water
reuse projects. They include some reclaimed water
contaminants (eg, many pharmaceuticals and hormones)
that are now reasonably well understood and others for
which a working understanding is still emerging (eg.
nanoparticles and some disinfection and oxidative

byproducts). Nonetheless, hundreds of new contami-
nants continue to be identified, and new sensitive
analytical methods are developed each year [83]. The
rate of such new developments far exceeds the rate at
which any regulatory regime or potable reuse project
operator could hope to adapt.

In 2017, the World Health Organization published
‘Potable Reuse: Guidance for Producing Safe Drinking
Water’ [84]. These WHO potable reuse guidelines state
that the management of potable reuse schemes should

be based on the framework for safe drinking water,
including water safety plans. These guidelines do not
provide any new guideline concentrations for chemical
contaminants, beyond what are already provided in the
WHO Guidelines for Drinking-water Quality. This is
based on the fact that chemicals of emerging concern,
such as pharmaceuticals and personal care products,
tend to be present at concentrations, which are gener-
ally low and generally do not warrant setting of new
guideline values. Nonetheless, in specific circum-
stances, where a chemical with no guideline value is
identified as a concern, approaches for developing

screening values are identified to support investigations
into potential risks and the need for implementation of
additional control measures. The principal reference is
to the framework presented in the Australian Guidelines
for Water Recycling [85]. Arguably, this concept should
also be one that is generally applied to drinking water,
beyond just planned potable reuse. This would be
particularly appropriate in situations of known, or
suspected, de facto potable reuse.

A conspicuously absent topic in this review, and almost

all others of its nature, is a detailed discussion of toxi-
cology. The vast majority of chemical contaminants,
considered to be of relevance to potable reuse projects,
have very limited bases upon which to draw conclusions
that ambient concentrations present meaningful risks to
public health. A few have been assessed to present little
or no risk to public health, whereas most suffer from a
lack of relevant information necessary to draw such
conclusions. It is highly possible, perhaps likely,that the
chemical contaminants responsible for imparting the
www.sciencedirect.com
greatest public health risks are contaminants or trans-
formation products, for which molecular identities are as
yet unknown or their significance not yet appreciated.
Furthermore, there are important acknowledged gaps in
our toxicological understanding of complex low-
concentration mixtures, as drinking water contami-
nants are inevitably presented as.

Based on current knowledge, summarised in this short
review, the chemical contaminants most warranting
concern in potable reuse projects are dependent upon
system-specific characteristics, most notably, the
advanced water treatment processes included in the
treatment train. For potable reuse treatment trains,
which include very broadly effective processes such as
reverse osmosis, concern will be focused on the rela-
tively small subset of chemicals, known to be poorly or
unreliably removed by these processes. For reverse
osmosis, this tends to include small (low molecular

weight), uncharged molecules such as trihalomethanes,
NDMA and 1,4-dioxane. Consequently, these chemicals
are often targeted for monitoring.

Owing to current limitations in the ability to meaning-
fully assess public health risks associated with individual
and mixture chemical contaminants in drinking water,
many researchers and practitioners working on potable
reuse risk management have advocated alternatives to
direct monitoring of contaminants of concern. One such
approach has been the identification of a limited

number of measurable chemical contaminants, such as
those highlighted in this review, to be used as ‘in-
dicators’ for the potential presence and effective
removal of a much wider range of unidentified con-
taminants [86,87]. Another widely advocated approach
involves the assessment of water quality by bioassay
effect-based measurements [88e90]. Although both
approaches require further research and development,
they both have the potential to play an important role in
monitoring the performance of chemical contaminant
removal for potable reuse projects.
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