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Executive Summary

This document reports on an investigation conducted by the UNSW on a mathemati-

cal model used by Sydney Water to produce medium-term water consumption forecasts.

Precipitation, temperature and evaporation weather variables are included in the explana-

tory variables of the model. The primary focus of this investigation was to examine the

sensitivity of the model consumption forecasts to changes in the weather.

The model software together with a reduced data set was migrated to the UNSW

computing environment. This migration enabled much faster runs of the model, which

were needed for this investigation and provides a range of opportunities for the future.

Weather data for the model is taken from 12 weather stations and then spatially

interpolated to each property in the Sydney Water delivery system using a method known

as inverse distance weighting. A comparison is made between inverse distance weighting

and the spatial interpolation method used for the Australian Water Availability Project

(AWAP) gridded data set.

One hundred different weather scenarios for the financial years 2014/15 to 2024/25

were generated using a stochastic weather generator fitted from the AWAP gridded data

set. Consumption forecasts based on each of these weather scenarios were calculated

using the model. The average range of total consumption forecasts for a financial year

was 7.39%. Perturbations of these weather scenarios facilitated the estimation of the

effect on consumption forecasts of each weather variable at each weather station. An

increase in precipitation result in a decrease in forecast consumption, whereas an increase

in temperature or evaporation result in an increase in forecast consumption. The mag-

nitude of forecast consumption changes is similar for each of precipitation, temperature

and evaporation.

The model consumption forecasts agree well with actual consumption, though the

model tends to slightly underestimate the effect of weather. An examination was con-

ducted of the correlation between consumption and other weather variables based of cli-

mate extreme indices. It was found that each of the precipitation and temperature indices

used by the SWCM has a strong correlation with consumption. Several other indices were
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also found to have a strong correlation with consumption. These indices may be useful

explanatory variables in any future consumption model.

We make the following recommendations and suggestions for future work.

• We suggest an exploration of alternative data – for example AWAP – to examine the

dependence of water use estimates on the 12 BoM weather stations used by Sydney

water;

• We suggest an exploration of the NSW/ACT regional climate modeling project

(NARCliM), including the generation of a set of projections, to assess the impact

of the underlying model assumptions on consumption forecasts.

• We suggest Sydney Water consider extending their modeling systems to use daily

data, replacing the use of quarterly weather and consumption data where possible;

• We suggest Sydney Water should consider a full review of SWCM including model

structure. This would enable other climate extremes indices to be examined for

their impact on water consumption.

3



1 Introduction

Sydney Water is a NSW State Government owned organisation which provides water to

almost five million people across Sydney, the Blue Mountains and the Illawarra (Figure

1). One of Sydney Water’s obligations is to provide a price submission every four years to

the Independent Pricing and Regulatory Tribunal (IPART) which includes the expected

income and expenses of Sydney Water operations.

For the 2014 submission to IPART, Sydney Water generated consumption forecasts

using a model which was originally developed as part of an investigation into the price

elasticity of water demand, (Abrams et al. (2012)). This model is hereafter referred to as

the Sydney Water consumption model (SWCM). Although weather was not the primary

focus of the SWCM, it was found that the weather variables precipitation, maximum

temperature and evaporation were statistically significant explanatory variables.

The University of New South Wales (UNSW) was engaged by Sydney Water to investi-

gate the skill of the SWCM in accounting for the impact of weather on water consumption.

This document is the report on that investigation.

2 Model Description

The SWCM is a dynamic panel data model, (Wooldridge (2010)). Panel data consists

of repeated observations on the same cross section of a population. For the SWCM, this

means repeated observations of water consumption on water consumers in the Sydney

Water network. For most consumers, a water consumption observation is the meter read-

ing taken each quarter prior to a water bill being generated. A dynamic panel data model

is one where past values of the response variable are included as explanatory variables.

The SWCM model equation for a residential property is

lnCi,t = α lnCi,t−1 + β′xi,t (1)
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Property Type Total Number Model Subset
Single Dwellings 1,052,960 127,209
Townhouse Units 100,757 99,761
Strata Units 421,571 133,187
Flats 116,168 111,003
Dual Occupancies 27,158 26,522

Table 1: List of residential property types with the total number of properties in the
Sydney Water region (June, 2014) and the number of those properties included in the
subset of properties used by the SWCM.

where α, β are model parameters, Ci,t is the consumption at property i during quarter t

and xi,t is a vector of explanatory variables.

For the purposes of the SWCM, water consumption is divided into residential and non-

residential consumption. Residential consumption consists of consumption by residential

properties which are categorised into the property types listed in Table 1. Consumption

is forecast for each of the residential properties analysed by the model and then summed

to produce a forecast for total residential consumption. Explanatory variables included in

the model which are used to explain residential consumption include: weather, historical

consumption, property type, participation in the WaterFix programme, possession of a

rain water tank, compliance with the Building Sustainability Index (BASIX), water price

and season.

The non-residential sector includes all property types not included in the residential

models. Non-residential properties were hierarchically segmented on the basis of con-

sumption levels, participation in water conservation programs and property types. The

first segment consists of the six highest water users. The second consists of all proper-

ties which participated in Every Drop Counts (EDC), Sydney Water’s water conservation

program for the non-residential sector. Finally, remaining properties were grouped in to

6 segments based on their property type classification. The resulting 8 segments are:

• Top 6 customers

• EDC participants

• Industrial

5



• Commercial

• Government and Institutional

• Agricultural

• Non-residential strata units

• Standpipes

A separate demand forecasting model was developed for each customer in the Top

6 segment. These models are generally based on historical average consumption with

allowances for planned water conservation activities. To forecast demand for the other

segments it is assumed that average demand will remain constant at the levels observed

in 2011/12, the last full year for which data was available at the time the non-residential

models were built. To correct the observed demand in 2011/12 for the impacts of above

or below average weather conditions, a combined seasonal-decomposition and time series

regression model of average demand was estimated.

Forecast property numbers are based on average growth rates. An important feature

of the non-residential sector is that property growth in the last 15 to 20 years is very

heavily concentrated in the segment of non-residential units and therefore forecast prop-

erty growth is heavily skewed towards units. The average consumption of this segment

is much lower than the average demand of the other segments. As a result, even though

average demand in each segment is assumed constant for forecasting purposes, overall

average demand by non-residential properties is forecast to decrease over time.

The weather variables used by the SWCM are listed in Table 2. The weather stations

used to provide weather variable data are listed in Table 3 and a map of these weather

stations is presented in Figure 1. Weather variables are aggregated to quarterly variables

when calculating residential consumption and to monthly variables when calculating non-

residential consumption. For each of the weather variables, long term averages are cal-

culated over the 30-year period 1980-2010. Generally, weather variables are included in

the SWCM as the difference between the current value and the long term average. The

model was fitted using data from 2010/11 to 2013/14. The last water restrictions for the
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Abbreviation Description
PRE Average daily precipitation
GT2MM Number of days when precipitation exceeds 2mm
TMAX Average daily maximum temperature
GT30C Number of days when maximum temperature exceeds 30◦C
EVAP Average daily pan evaporation

Table 2: List of weather variables used by the SWCM.

Station Name Station Id PRE GT2MM TMAX GT30C EVAP
Albion Park 68241 Y Y Y Y N
Bellambi 68228 Y Y Y Y N
Camden 68192 Y Y Y Y N
Holsworthy 66161/67117 Y Y Y Y N
Katoomba 63039 Y Y Y Y N
Penrith 67113 Y Y Y Y N
Prospect 67019 Y Y Y Y Y
Richmond 67105/67021 Y Y Y Y Y
Riverview 66131 Y N Y N Y
Springwood 63077 Y Y Y Y N
Sydney Airport 66037 Y Y Y Y Y
Terrey Hills 66059 Y Y Y Y N

Table 3: Weather data provided by weather stations for the SWCM.

Sydney Region were lifted in June 2009. This last round of water restrictions appears to

have changed water use habits in the Sydney Region. Therefore, water consumption data

prior to 2009, at times when there were no water restrictions, were not used for model

fitting.

3 Software Migration to UNSW Environment

One of the early objectives of this investigation was to migrate the SWCM software onto

the UNSW environment in order to enable the calculation of consumption forecasts from a

large number of weather scenarios. A weather scenario refers to a single set of data for each

of the weather variables (Table 3) over the period covered by the financial years 2010/11

to 2024/25. The UNSW environment consists of a cluster of Linux servers connected to a

single Storage Area Network (SAN). Each of the Linux servers runs 16 CPUs with 256GB

of RAM.

Originally, the SWCM was implemented on a Windows PC using SPSS software (IBM
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Figure 1: Sydney Water area of operations (orange) and location of the weather stations
(red) used by the SWCM, (Table 3).
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(2017)) and it would take several hours to calculate consumption forecasts from a single

weather scenario. At the beginning of this investigation, Frank Spanninks (Sydney Water)

was able to reduce the SWCM run-times down to about 18 minutes per weather scenario,

by coding changes and by only calculating consumption forecasts for a representative

sample of the residential properties (Table 1).

SWCM was able to be migrated to run on the UNSW environment using SPSS soft-

ware. This migration required only minimal code changes and resulted in a run-time of

about 12 minutes. There is little capability in SPSS to utilise the parallel processing ca-

pacity of the UNSW enviroment, so it was decided to migrate the SWCM software from

SPSS to MATLAB (Mathworks (2017)). This migration required a substantial effort,

but was made easier by the presence of the SPSS version of SWCM which allowed the

comparison of intermediate and final results.

Once migrated to MATLAB, it was possible to run 10 weather scenarios in parallel

and run a total of 100 scenarios in about 110 minutes. Note that a migration of SWCM

to either R (R (2017)) or Python (Python (2017)) rather than MATLAB was also a

reasonable option which may have achieved even better results, but was not attempted.

While these technical changes to enable SWCM on a Linux cluster appear simply

a question of efficiency, they open up major new opportunities that we employ here.

Specifically, these technical changes enable hundreds of simulations to be conducted to

assess uncertainty and translate forecasts into probabilities.

4 Generation of Weather Scenarios

4.1 Introduction

The generation of large numbers of weather scenarios which are consistent with historical

observations is usually referred to as stochastic weather generation. Stochastic weather

generation has applications in many areas including agriculture, ecology and hydrology.

Reviews of the many different methods proposed can be found in Wilks and Wilby (1999),

Srikanthan and McMahon (2001) and Ailliot et al. (2015).
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Weather scenarios which can be used by the SWCM need to contain monthly sequences

of the weather variables precipitation, number of days greater than 2mm, maximum tem-

perature, number days greater than 30◦C and evaporation at the weather stations listed

in Table 3. Initially, daily sequences of precipitation, maximum temperature and evapo-

ration are generated, from which it is straightforward to generate monthly sequences of

number of days greater than 2mm and number of days greater than 30◦C and also to

aggregate the daily sequences of precipitation, maximum temperature and evaporation

into monthly sequences. Following a similar approach to Richardson (1981), we consider

precipitation to be the primary variable, then condition maximum temperature on pre-

cipitation and finally condition evaporation on precipitation and maximum temperature.

The precipitation and maximum temperature data used to fit stochastic weather

models was the Australian Water Availability Project (AWAP) gridded data set (Jones

et al. (2009)). The AWAP data-set provides precipitation and temperature data on a

0.05◦ × 0.05◦ (approximately 5km) grid across Australia for the period 1910-2016. The

main advantage of using AWAP data rather than Bureau of Meteorology (BOM) data is

that there are no missing values. There is some loss of precision in using AWAP data

rather than BOM data, mainly for precipitation data, (Contractor et al. (2015)) though

this is less significant in the Sydney Region where there is a large number of BOM weather

stations. For this investigation, the AWAP data used was from the nearest grid point to

the BOM weather stations in Table 1 over the period (1960-2015). AWAP data prior to

1960 was not used due to the relative scarcity of weather stations in the Sydney Region

prior to 1960 (Jones et al. (2009)).

The evaporation data used to fit the stochastic weather models was the BOM data at

the weather stations listed in Table 1 over the period 2001-2010 for daily data and 2005-

2014 for yearly data. Daily evaporation data for which the quality was not confirmed or

which was accumulated over more than one day was not used. The evaporation data used

in this investigation was provided by Sydney Water.

Precipitation and evaporation data are recorded for the 24 hour period to 9am whereas

maximum temperature data are recorded for the 24 hour period from 9am. For the
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purposes of this investigation, precipitation and evaporation data were shifted back 24

hours, so that all weather variables reflect the 24 hour period from 9am.

4.2 Precipitation

The daily precipitation model is a variation of the commonly used combination of oc-

currence and intensity models (Katz (1977)). In Katz (1977), occurrence is a binary

variable which indicates whether the day is ”wet” or ”dry”, i.e. whether precipitation

exceeds some small threshold, and intensity is the amount of precipitation which occurs

on a ”wet” day. Often, a first-order, two-state Markov chain is used for the occurrence

model and a gamma distribution is used for the intensity model. To address some of the

shortcomings found with these choices, various higher-order, multi-state Markov chains

with alternative intensity distributions have been proposed (Gregory et al. (1993), Jones

and Thornton (1993) and Suhaila and Jemain (2007)).

For the daily occurrence model, we chose a first-order eight-state Markov chain with

thresholds set at

Thresholds = (0mm, 1mm, 2mm, 4mm, 8mm, 15mm, 35mm) . (2)

The threshold at 2mm was chosen to match the GT2MM weather variable in the SWCM

and improves the intersite correlation and the interannual variability of the GT2MM

weather variable. The other thresholds were chosen so that sufficient observed data ex-

ists between the thresholds. The addition of the other thresholds to create a eight-state

Markov chain improves the intersite correlation of the average precipitation weather vari-

able.

An individual daily occurrence model is fitted for each site and each month (144

models). The fitted model consists of an 8×8 transition probability matrix. The transition

probability from occurrence state i to occurrence state j is the conditional probability

P {Od = j|Od−1 = i} , (3)
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Od−1�Od 0 1 2 3 4 5 6 7
0 0.668 0.198 0.038 0.033 0.023 0.017 0.020 0.003
1 0.387 0.309 0.064 0.087 0.064 0.044 0.033 0.011
2 0.238 0.307 0.099 0.139 0.079 0.079 0.030 0.030
3 0.155 0.373 0.091 0.082 0.127 0.073 0.055 0.045
4 0.248 0.317 0.079 0.050 0.109 0.129 0.040 0.030
5 0.187 0.253 0.088 0.099 0.077 0.132 0.088 0.077
6 0.095 0.238 0.079 0.111 0.143 0.143 0.095 0.095
7 0.029 0.086 0.057 0.029 0.171 0.286 0.171 0.171

Table 4: The transition probability matrix for Sydney Airport in January. The
(i+ 1, j + 1)th entry of the transition probability matrix is the conditional probability
that the occurrence state on day d, Od = (j) given that the occurrence state on day d−1,
Od−1 = (i). The sum of the transition probabilities in each row equals one.

where Od is the occurrence state on day d. The occurrence state on day d is 0 if the pre-

cipitation on day d is zero, is 1 if the daily precipitation is greater than the first threshold

0mm and less than or equal to the second threshold 1mm, etc. The occurrence state on

day d is 7 if the precipitation on day d is greater than the seventh threshold, 35mm. An

example transition probability matrix is shown in Table 4. The transition probabilities in

Table 4 indicate that light precipitation days tend to follow light precipitation days and

heavy precipitation days tend to follow heavy precipitation days. This is typical of all

sites in the Sydney region and all months.

To generate a sequence of daily occurrence states {Os,d}, we first generate sequences of

independent, identically distributed (iid) standard Gaussian random variables, {us,d} for

each site s. Let TPs,m (i, j) denote the (i+ 1, j + 1)th entry of the transition probability

matrix for site s and month m. Given occurrence state Os,d−1 we set

Os,d = max
j

{
Φ (us,d) <

j∑
k=1

TPs,m (Os,d−1, j)

}
(4)

where Φ is the cumulative distribution function of the standard Gaussian distribution and

m is the month of day d. Initial values for the daily occurrence state sequences are set to

zero. The intersite correlation of the sequences {us,d} is estimated by simulation.

As with the daily occurrence model, an intensity distribution was estimated for each

site and each month, (144 distributions). A choice was made from the same set of dis-
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tributions used in Suhaila and Jemain (2007), i.e. the exponential, gamma, Weibull and

their associated mixture distributions. In each case maximum likelihood estimation was

used. Two different measures for goodness of fit were used to compare the distributions.

The first goodness of fit measure is the integral of the absolute value of difference between

the fitted quantile function and the empirical quantile function,

Z1 =

∫ 1

0

∣∣∣Q̂fit (p)− Q̂emp (p)
∣∣∣ dp (5)

where Q̂fit (p) is the fitted quantile function and Q̂emp (p) is the empirical quantile function.

The second goodness of fit measure is the integral of the absolute value of difference

between the logs of the fitted quantile function and the empirical quantile function,

Z2 =

∫ 1

0

∣∣∣ln(Q̂fit (p)
)
− ln

(
Q̂emp (p)

)∣∣∣ dp. (6)

The Z1 goodness of fit measure tends to assess the fit only at high quantiles, whereas

Z2 more evenly assesses the fit across the entire distribution. For Z1, the mixed Weibull

distribution was the best fit for 92 of the site/month pairs, the mixed Gamma for 10 and

the Weibull for 42. For Z2, the mixed Weibull distribution was the best fit for 131 of the

site/month pairs and the mixed Gamma for 13. When the mixed Weibull distribution

was not the best fit it was second best on 56 occasions and third best on 9. These results

are largely in agreement with those reported in Suhaila and Jemain (2007). Thus, rather

than use different distributions for different site/month pairs it was decided to use the

mixed Weibull distribution to model daily intensity for all site/month pairs.

The density function for a mixed Weibull distribution is given by

f (x;ω, α1, β1, α2, β2) = ω

(
α1

β1

)
exp

[
−
(
x

β1

)α1
]

+ (1− ω)

(
α2

β2

)
exp

[
−
(
x

β2

)α2
]

(7)

where ω ∈ [0, 1] is the mixture parameter, α1, α2 > 0 are the shape parameters and

β1, β2 > 0 are the scale parameters.

A common problem in stochastic weather generation is the presence of a negative bias
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in interannual variability (Gregory et al. (1993), Wilks (1999), Kysely and Dubrovsky

(2005)). The use of higher-order, multi-state Markov chains has been proposed as a

method to reduce the negative bias in interannual variability (Gregory et al. (1993)),

however the consequent increase in the number of model parameters can result in model-

fitting problems for small data sets. For this investigation, we use an alternative method,

where low frequency models (yearly) for the same weather variable are coupled with the

high frequency (daily) models (Wang and Nathan (2007)).

The low frequency precipitation model chosen is an autoregressive (AR) model (Brock-

well and Davis (1991)) on the number of ”wet” days per year,

GT0MMy,s = µs + φsGT0MMy−1,s + ey,s (8)

where GT0MMy,s is the number of ”wet” days in year y at site s, {ey,s} is a sequence of iid

Gaussian random variables with distribution N
(
0, σ2

e,s

)
and µs, φs are model parameters.

The observed distribution of the yearly GT0MM for each site is reasonably symmetrical

with a lighter tail than the Gaussian distribution. The minimum and maximum number

of ”wet” days recorded in AWAP data (1960-2015) for any of the 12 weather stations listed

in Table 3 is 101 and 253 respectively. Therefore, the boundary problems where there

are close to 0 ”wet” days or close to 365 ”wet” days, which may occur when using this

method to model in either very arid or very wet locations are not relevant when modelling

in the Sydney Region. The correlation between the innovation sequences,{ey,s}, of each

site is estimated through simulation.

Once all the precipitation models in have been fitted, the steps involved to generate

weather scenarios for the PRE and GT2MM weather variables are as follows:

• Generate a yearly occurrence sequence for all sites.

• Disaggregate the yearly occurrence sequences into daily occurrence sequences.

• Convert the daily occurrence sequences into daily intensity sequences.

• Aggregate the daily intensity sequences into monthly and quarterly PRE and GT2MM
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sequences.

A yearly occurrence sequence is disaggregated into a daily occurrence sequence by

generating up to 200 daily occurrence sequences for all sites, choosing the one which has

the yearly occurrence totals closest to those of the yearly occurrence sequence and then

modifying that daily sequence so that its yearly occurrence totals are exactly the same as

the yearly occurrence sequence. Modifications to the daily sequence consist of replacing

daily occurrence states equal to zero with daily occurrence states equal to one and vice

versa. To calculate a daily intensity from a daily occurrence, we take the quantile at

Φ (us,d) in eq (4) of the mixed Weibull distribution in eq (7).

One hundred precipitation weather scenarios each spanning the range 2010-2025 were

generated for each of the 12 weather stations in Table 3. Annual statistics from the

AWAP data and the weather scenarios for the PRE and GT2MM weather variables are

presented in Tables 5 and 6 respectively. The mean weather scenario value of the PRE

weather variable is about 2.5% less than the mean AWAP value. All other weather

scenario statistics for the PRE and GT2MM weather variables are consistent with the

AWAP statistics. Note that all weather scenario minimums/maximums are less/greater

than the corresponding AWAP minimum/maximum. This is to be expected since the

weather scenarios statistics are calculated from a total of 16*100 =1600 years of data,

whereas the AWAP statistics are calculated from a total of 56 years of data.

Time series plots from weather scenario number 1 are presented in Figure 2 (daily

data) and Figure 3 (yearly data).

4.3 Maximum Temperature

To model daily maximum temperatures, we use a generalized additive model of location,

scale and shape (GAMLSS). GAMLSS models are a generalisation of generalized additive

models (GAM) which, in turn, are a generalisation of generalized linear models (GLM).

The GLM model equation is

E [g (Yi)] = x′iβ (9)
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AWAP (1960-2015) Weather Scenarios
Site Mean SD Min Max Mean SD Min Max
Albion Park 1,206 347 574 1,996 1,170 327 420 2,421
Bellambi 1,159 321 550 2,044 1,128 304 446 2,387
Camden 735 205 381 1,329 718 201 296 1,608
Holsworthy 939 239 536 1,614 916 244 343 1,897
Katoomba 1,237 295 687 2,024 1,212 306 518 2,362
Penrith 826 211 457 1,409 806 222 299 1,638
Prospect 890 235 484 1,510 865 235 351 1,905
Richmond 832 211 455 1,386 811 221 305 1,724
Riverview 1,106 279 580 1,824 1,071 278 430 2,250
Springwood 977 249 541 1,681 954 256 401 2,200
Sydney Airport 1,110 274 557 1,930 1,079 278 470 2,271
Terrey Hills 1,226 295 717 1,967 1,198 305 495 2,345

Table 5: Annual statistics for precipitation (mm) from AWAP (1960-2015) and weather
scenarios.

AWAP (1960-2015) Weather Scenarios
Site Mean SD Min Max Mean SD Min Max
Albion Park 81 15 53 113 81 14 41 133
Bellambi 81 14 54 111 82 14 37 135
Camden 62 13 34 85 62 12 30 107
Holsworthy 73 14 47 105 73 14 34 120
Katoomba 94 16 62 126 95 15 51 149
Penrith 67 13 41 93 68 14 32 110
Prospect 69 13 43 97 70 14 36 117
Richmond 68 13 42 96 69 14 32 111
Riverview 81 14 51 110 81 15 42 127
Springwood 75 14 47 102 76 14 38 123
Sydney Airport 82 15 52 115 82 15 43 133
Terrey Hills 87 15 56 119 88 15 41 146

Table 6: Annual statistics for number of days when precipitation was greater than 2mm
from AWAP (1960-2015) and weather scenarios.
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Figure 2: Daily precipitation, maximum temperature and evaporation at Prospect and
Sydney Airport from weather scenario number 1, January - June 2020.
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Figure 3: Yearly time series at Prospect and Sydney Airport from weather scenario num-
ber 1 for (a) Precipitation (PRE), (b) Number of days when precipitation greater than
2mm (GT2MM), (c) Maximum temperature (TMAX), (d) Number of days when maxi-
mum temperature greater than 30◦C (GT30C) and (e) Evaporation (EVAP).
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where Yi is the response variable, xi is a vector of explanatory variables, β is a vector of

model parameters and g () is a link function. The distribution of the response variables

{Yi} is assumed to be a member of the exponential family of distributions. The exponential

family of distributions includes the normal, exponential, Poisson and Weibull distributions

amongst others. Typically, for continuous response variables, the link function is either the

identity or the log function. For general information on GLMs, see McCullagh and Nelder

(1989), Dobson (2001) and for examples of their use in stochastic weather generation, see

Katz and Parlange (1995), Furrer and Katz (2007).

The GAM is an extension of the GLM which allows the expected value of the response

value to be a linear combination of functions of the explanatory variables. The GAM

model equation is

E [g (Yi)] =
∑
j

fj

(
x

(j)
i

)
β(j) (10)

where Yi is the response variable, x
(j)
i is the jth element of the vector xi of explanatory

variables, fj is a function of the explanatory variables, β(j) is the jth element of the vector

β of model parameters and g () is a link function. Typically, the functions fj are penalized

spline approximations of the explanatory variables. For general information on GAMs,

see Hastie and Tibshirani (1990), Wood (2006).

The GAMLSS is an extension of the GAM which allows modelling of properties of the

response variable other than the mean. Typically, a GAMLSS includes a GAM for each of

the response variable distribution parameters. The main advantage of a GAMLSS over a

GAM is that a GAMLSS does not require the assumption that the response variable dis-

tribution be a member of the exponential family of distributions. For general information

on GAMLSS, see Rigby and Stasinopoulos (2005).

The daily maximum temperature GAMLSS model assumes that the daily maximum

temperature has a skewed normal distribution (SN2, p184, Rigby et al. (2014)). The

density function of a skewed normal distribution is given by

f (x;µ, σ, ν) =
2ν√

2πσ (1 + ν2)

{
exp

(
−1

2
(νz)2

)
I (x < µ) + exp

(
−1

2

(z
ν

)2
)
I (x ≥ µ)

}
(11)
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where z = (x− µ) /σ and σ, ν > 0. The model equations of the daily maximum temper-

ature GAMLSS model are

µ ∼ year + ftmax (tmaxd−1) + ftmax (tmaxd−2) + lightd + heavyd (12)

ln (σ) ∼ ftmax (tmaxd−1) + ftmax (tmaxd−1)2 (13)

ln (ν) ∼ constant (14)

where tmaxd is the maximum temperature on day d, lightd equals one if the precipitation

on day d was greater than 0mm and zero otherwise, heavyd equals one if the precipitation

on day d was greater than 2mm and zero otherwise and

ftmax (x) =


xL if x ≤ xL

x if xL < x < xH

xH if x ≥ xH

. (15)

where xL is the 0.05th quantile of {tmaxd} and xH is the 0.75th quantile of {tmaxd}.

The use of the function ftmax rather than a similarly shaped spline smoothing function

on tmaxd−1 and tmaxd−2, as is more common, was simply to reduce the execution time

of daily maximum temperature simulations. A daily maximum temperature GAMLSS

model was estimated for each site and each month (144 models).

As was the case with stochastic precipitation generation, simulations generated from

the daily maximum temperature GAMLSS model also have a negative bias in interannual

variability. We address this bias in maximum temperature interannual variability by

generating a sequence of yearly maximum temperature averages and scaling the daily

maximum temperature sequences accordingly. For yearly maximum temperature averages

we use a linear model with a model equation given by

TMAXy,s = βs + βYEAR,sYEAR + βGT0MM,sGT0MMy,s + βGT2MM,sGT2MMy,s (16)

where TMAXy,s is the average maximum temperature for site s during year y, GT0MMy,s
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Site βs βYEAR,s βGT0MM,s βGT2MM,s

Albion Park 5.46 0.0095 -0.0095 -0.0071
Bellambi 8.43 0.0081 -0.0104 -0.0080
Camden 0.68 0.0127 -0.0088 -0.0159
Holsworthy -0.84 0.0130 -0.0079 -0.0137
Katoomba -26.86 0.0240 -0.0112 -0.0129
Penrith -2.18 0.0145 -0.0118 -0.0101
Prospect 3.24 0.0113 -0.0086 -0.0150
Richmond -3.84 0.0153 -0.0093 -0.0113
Riverview -2.17 0.0137 -0.0073 -0.0126
Springwood -6.89 0.0162 -0.0084 -0.0141
Sydney Airport -3.74 0.0143 -0.0052 -0.0143
Terrey Hills 0.18 0.0125 -0.0077 -0.0113

Table 7: Parameters of the yearly maximum temperature model.

is the number of days when precipitation was greater than 0mm for site s during year

y and GT2MMy,s is the number of days when precipitation was greater than 2mm for

site s during year y. The parameters of the yearly maximum temperature model are

listed in Table 7. The parameter values of βYEAR,s indicate a rise in average maximum

temperatures of approximately 1◦C−2◦C per century. The negative values of parameters

βGT0MM,s and βGT2MM,s indicate that years with more ”wet” days tend to have lower

average maximum temperatures.

Once all the maximum temperature models in have been fitted and all the precipitation

scenarios have been generated, the steps involved to generate scenarios for the TMAX

and GT30C weather variables are as follows:

• Generate a yearly maximum temperature sequence for all sites.

• Disaggregate the yearly maximum temperature sequences into daily maximum tem-

perature sequences.

• Aggregate the daily maximum temperature sequences into monthly and quarterly

TMAX and GT30C sequences.

A yearly maximum temperature sequence is disaggregated into a daily maximum tem-

perature sequence by generating daily maximum temperature sequences for all sites, and

then for each site and each year adding the difference between the yearly maximum tem-
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AWAP (1960-2015) Weather Scenarios
Site Mean SD Min Max Mean SD Min Max
Albion Park 21.98 0.48 21.09 23.14 22.25 0.43 20.80 23.81
Bellambi 22.00 0.48 21.12 23.09 22.23 0.44 20.92 23.96
Camden 23.53 0.57 22.52 24.70 23.90 0.49 22.40 25.49
Holsworthy 22.60 0.53 21.67 23.70 22.98 0.46 21.54 24.78
Katoomba 17.23 0.70 16.06 18.58 17.93 0.60 15.85 19.92
Penrith 23.89 0.62 22.85 25.14 24.31 0.54 22.73 26.21
Prospect 23.17 0.56 22.20 24.34 23.50 0.50 21.99 25.32
Richmond 24.02 0.61 23.01 25.27 24.46 0.53 22.93 26.48
Riverview 22.73 0.52 21.86 23.83 23.14 0.47 21.64 24.79
Springwood 22.82 0.64 21.75 24.10 23.29 0.55 21.48 25.19
Sydney Airport 22.43 0.51 21.57 23.50 22.85 0.45 21.33 24.52
Terrey Hills 22.54 0.52 21.70 23.66 22.92 0.46 21.45 24.61

Table 8: Annual statistics for maximum temperature from AWAP (1960-2015) and
weather scenarios.

perature and the average of the daily temperatures to each day of the daily maximum

temperature sequence.

One hundred maximum temperature weather scenarios each spanning the range 2010-

2025 were generated for each of the 12 weather stations in Table 3. Annual statistics from

the AWAP data and the weather scenarios for the TMAX and GT30C weather variables

are presented in Tables 8 and 9 respectively. The mean weather scenario value of the

TMAX weather variable is about 0.4◦C more than the mean AWAP value and the mean

weather scenario value of the GT30C weather variable is about 5 days more than the

mean AWAP value. The standard deviations of the weather scenario TMAX and GT30C

weather variables is slightly less than the AWAP standard deviations. The reason for

these differences is the presence of an increasing trend in maximum temperatures as a

function of year. The middle of weather scenario year range, 2017, is 30 years later than

the middle of the AWAP year range, 1987. This is consistent with the higher means

for the weather scenario TMAX and GT30C weather variables. The length of weather

scenario year range, 16 years, is 40 years shorter than the length of the AWAP year range,

56 years. This is consistent with the lower standard deviations for the weather scenario

TMAX and GT30C weather variables.
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AWAP (1960-2015) Weather Scenarios
Site Mean SD Min Max Mean SD Min Max
Albion Park 18 8 3 35 21 5 5 39
Bellambi 18 7 6 37 21 5 7 41
Camden 47 12 17 69 52 9 24 82
Holsworthy 31 9 11 54 36 7 13 62
Katoomba 9 6 0 30 12 4 2 28
Penrith 55 13 22 80 60 10 32 97
Prospect 41 11 14 64 45 9 19 77
Richmond 55 13 25 79 61 10 33 100
Riverview 28 9 8 49 34 7 14 59
Springwood 44 13 13 70 50 9 23 79
Sydney Airport 26 9 7 44 31 6 12 52
Terrey Hills 27 9 7 45 32 7 12 54

Table 9: Annual statistics for number of days when maximum temperature was greater
than 30◦C from AWAP (1960-2015) and weather scenarios.

4.4 Evaporation

To model daily evaporation, we use a generalized additive model of location, scale and

shape (GAMLSS). The daily evaporation GAMLSS model assumes that the daily evapo-

ration has a generalized gamma distribution (GG, p238, Rigby et al. (2014)). The density

function of a generalized gamma distribution is given by

f (x;µ, σ, ν) =
|ν| θθzθ exp (−θz)

Γ (θ)x
(17)

for x > 0, where µ > 0, σ > 0 and −∞ < ν <∞ and where z = (x/µ)ν and θ = 1/ (σ2ν2).

The model equations of the daily evaporation GAMLSS model are

ln (µ) ∼ tmaxd + lightd + heavyd +

cos (πζd/365) + sin (πζd/365) + cos (2πζd/365) + sin (2πζd/365) (18)

ln (σ) ∼ tmaxd + lightd + heavyd +

cos (πζd/365) + sin (πζd/365) + cos (2πζd/365) + sin (2πζd/365) (19)

ν ∼ lightd + heavyd +

cos (πζd/365) + sin (πζd/365) + cos (2πζd/365) + sin (2πζd/365) (20)

23



Site γs γTMAX,s γGT0MM,s

Prospect 0.07 0.1810 -0.0066
Richmond -4.54 0.3534 -0.0038
Riverview 0.18 0.1800 -0.0025
Sydney Airport -3.62 0.3710 0.0015

Table 10: Parameters of the yearly evaporation model.

where tmaxd is the maximum temperature on day d, lightd equals one if the precipitation

on day d was greater than 0mm and zero otherwise, heavyd equals one if the precipitation

on day d was greater than 2mm and zero otherwise and ζd is the number between 1

and 365 representing the day of the year of the day d. The explanatory variable tmaxd

was omitted from the model for ν as it caused convergence problems. A single daily

evaporation GAMLSS model was estimated for each site for which we have evaporation

data (4 models).

As was the case with stochastic precipitation and maximum temperature generation,

simulations generated from the daily evaporation GAMLSS model also have a negative

bias in interannual variability. We address this bias in evaporation interannual variability

by generating a sequence of yearly evaporation averages and scaling the daily evaporation

sequences accordingly. For yearly evaporation averages we use a linear model with a

model equation given by

EVAPy,s = γs + γTMAX,sTMAXy,s + γGT0MM,sGT0MMy,s (21)

where EVAPy,s is the average evaporation for site s during year y, TMAXy,s is the average

maximum temperature for site s during year y, GT0MMy,s is the number of days when

precipitation was greater than 0mm for site s during year y. The parameters of the yearly

evaporation model are listed in Table 10. The positive values of γTMAX,s parameters

indicate that years with higher maximum temperatures tend to have higher evaporation.

Except for Richmond, the γGT0MM,s parameters are not significant.

Once all the evaporation models in have been fitted and all the precipitation and

maximum temperature scenarios have been generated, the steps involved to generate

scenarios for the EVAP weather variables are as follows:
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BoM (2005-2014) Weather Scenarios
Site Mean SD Min Max Mean SD Min Max
Prospect 3.29 0.20 2.90 3.52 3.19 0.24 2.44 4.03
Richmond 3.46 0.28 3.10 3.83 3.41 0.26 2.56 4.31
Riverview 3.89 0.19 3.65 4.14 3.86 0.19 3.23 4.51
Sydney Airport 5.14 0.21 4.92 5.55 5.15 0.20 4.50 5.78

Table 11: Annual statistics for pan evaporation from BoM (2005-2014) and weather sce-
narios.

• Generate a yearly evaporation sequence for all sites.

• Disaggregate the yearly evaporation sequences into daily evaporation sequences.

• Aggregate the daily evaporation sequences into monthly and quarterly EVAP se-

quences.

A yearly evaporation sequence is disaggregated into a daily evaporation sequence by

generating evaporation sequences for all sites, and then for each site and each year adding

the difference between the yearly evaporation and the average of the daily evaporations

to each day of the daily evaporation sequence.

One hundred evaporation weather scenarios each spanning the range 2010-2025 were

generated for each of the 4 weather stations in Table 3 which supply evaporation data.

Annual statistics from the BoM data and the weather scenarios for the EVAP weather

variable is presented in Table 11. The mean and standard deviation of the EVAP weather

variable from the BoM data and the weather scenarios are reasonably close for each site.

4.5 Intersite and intervariable correlation

We have seen that the weather scenario statistical properties of each weather variable

at each site is largely consistent the statistical properties of the historical data (Tables

5, 6, 8, 9 and 11). In addition, we need to verify that weather scenario intersite and

intervariable correlations are also consistent with the historical data.

In the historical data, the intersite correlation of maximum temperatures is very high,

i.e. when it is a hot day at one site, it is very likely to also be a hot day at all nearby sites.

Similarly for the precipitation, though typically the intersite correlation of precipitation is
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Data Source PRE GT2MM TMAX GT30C EVAP
AWAP (1960-2015) 0.892 0.887 0.979 0.889 -
BoM (2005-2014) - - - - 0.629
Weather Scenarios 0.783 0.847 0.928 0.759 0.597

Table 12: Average intersite correlation of annual weather variables.

less than that of maximum temperature. In the historical data there is also a correlation

between the weather variables at the same site. For example the maximum temperature

on a wet day is likely to be lower than the maximum temperature on a dry day. Of course

this is not always true, as the rain may not arrive until the evening after the maximum

temperature has already been reached.

The average intersite correlation of annual totals for each weather variable for both

the weather scenarios and the historical data is listed in Table 12. For each weather

variable the weather scenario average intersite correlation is slightly less than the historical

average intersite correlation. Some improvement in the average intersite correlations may

be achieved through modifications to the yearly weather variable models, eq (8), eq (16)

and eq (21), and the precipitation thresholds, eq (2).

The average intervariable correlation of annual totals of weather variables for both the

weather scenarios and the historical data is listed in Table 13. The weather scenario and

historical average intervariable correlation values are reasonably close for most pairs of

weather variables. The biggest discrepancy is for the intervariable correlation of EVAP

and PRE. This may be due to the smaller number of sites which provide evaporation

data and the shorter period for which it is provided in comparison with precipitation and

maximum temperature data.

It is worth noting that the intersite correlation, intervariable correlation, interannual

variation, etc of AWAP data is likely to differ to at least some extent from actual obser-

vations. Thus, even if the weather scenarios do have the same statistical properties as the

AWAP data, they are still likely to be an imperfect representation of the real world.

26



AWAP, BoM PRE GT2MM TMAX GT30C EVAP
PRE 1.000 0.804 -0.509 -0.413 -0.244
GT2MM 0.804 1.000 -0.579 -0.487 -0.603
TMAX -0.509 -0.579 1.000 0.800 0.781
GT30C -0.413 -0.487 0.800 1.000 0.629
EVAP -0.244 -0.603 0.781 0.629 1.000

Weather Scenarios PRE GT2MM TMAX GT30C EVAP
PRE 1.000 0.824 -0.488 -0.358 -0.483
GT2MM 0.824 1.000 -0.626 -0.465 -0.602
TMAX -0.488 -0.626 1.000 0.712 0.783
GT30C -0.358 -0.465 0.712 1.000 0.581
EVAP -0.483 -0.602 0.783 0.581 1.000

Table 13: Average intervariable correlation of annual weather variables.

Minimum Median Maximum Range
2014/15 438 457 471 7.2%
2015/16 442 462 478 8.0%
2016/17 450 468 481 6.6%
2017/18 456 475 492 7.6%
2018/19 459 479 499 8.2%
2019/20 463 483 500 7.6%
2020/21 474 486 502 5.8%
2021/22 477 494 513 7.5%
2022/23 481 499 517 7.1%
2023/24 490 504 527 7.4%
2024/25 484 507 527 8.3%
Mean 464.9 483.2 500.6 7.39%

Table 14: The minimum, median, maximum and range of consumption forecasts (GL)
from 100 weather scenarios for the financial years 2014/15 to 2024/25. The range is
calculated from (maximum - minimum)/median as a percentage.

5 Model Sensitivity to Weather

5.1 SWCM forecasts from the weather scenarios

The SWCM was run on each of the 100 weather scenarios generated in Section 4 and total

consumption forecast calculated for the financial years 2014/15 to 2024/25. Consumption

forecasts for the financial years 2010/11 to 2013/14 are set to actual consumption. A box

plot of the total consumption for the financial years 2014/15 to 2024/25 together with

some statistics is presented in Figure 4. A bar chart of the total consumption from each

weather scenario in the 2018/19 financial year is presented in Figure 5.
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Figure 4: Box plot of total consumption forecasts from 100 weather scenarios for financial
years 2014/15 to 2024/25.
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Figure 5: Bar chart of total consumption forecasts from 100 weather scenarios for the
2018/19 financial year.
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The average range of total consumption forecasts for each financial year is 7.39%.

This is slightly less than the Sydney Water’s expected range of around 10% prior to the

commencement of this investigation.

In general, years for which there are high consumption forecasts are hotter and dryer

than years for which there are low consumption forecasts. More specifically, years for

which there are high consumption forecasts tend to have high maximum temperatures

(TMAX) and high pan evaporation levels (EVAP) in the hotter quarters Q2 (OND) and

Q3 (JFM). The weather in the colder quarters Q1 (JAS) and Q4(AMJ) has less effect on

consumption forecasts.

5.2 Comparison of SWCM forecasts with actual consumption

In this section, we compare the SWCM forecasts with actual consumption for the finan-

cial years 2011/12 to 2015/16 and examine how the forecasts change with actual weather.

It can be seen from the model equation, eq (1), that forecasts of the next quarter’s con-

sumption requires information about the previous quarter’s consumption, lnCi,t−1. When

calculating consumption forecasts into the future, we need to use forecast consumption

rather than actual consumption for lnCi,t−1. The use of forecast consumption data for

lnCi,t−1, introduces additional errors which obscure the model sensitivity to weather. For

this analysis, given that we now have actual consumption data up to 2015/16, we use it

as data for the lnCi,t−1 explanatory variable.

Plots of average annual single dwelling consumption are presented in Figure 6. Single

dwelling consumption is used rather than total consumption as consumption at single

dwellings tends to be more sensitive to the weather than consumption at other property

types. Average consumption is used rather than total consumption to remove the impact

of population changes. From Figure 6(a), it can be seen that forecast consumption tends

to be higher than actual consumption when actual consumption is low and tends to be

lower than actual consumption when actual consumption is high. From Figure 6(b), it

can be seen that the forecast error tends to be positive when maximum temperatures

are low and negative when maximum temperatures are high. In other words, it appears
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that the SWCM underestimates the impact of weather on water consumption, albeit this

proposition is made from only five financial years of data.

5.3 Perturbation of weather scenario means

In this section, we perturb the means of some of the weather scenarios generated in Section

4, run the SWCM on the perturbed weather scenarios and calculated the resulting change

to consumption forecasts. These consumption forecast changes are a measure of the

sensitivity of the SWCM model to weather changes.

Estimations of model sensitivity to perturbation of weather scenario means were cal-

culated as follows:

1. Use model to forecast annual consumption based on 12 different weather scenarios

for each year in the period 2015-2025 (11 years) giving 132 consumption forecasts.

2. For each day of each weather scenario modify the weather data at selected weather

stations by any or all of i) multiplying or dividing precipitation by the constant

KPRE, ii) adding or subtracting a constant K◦TMAXC to the temperature, iii) mul-

tiplying evaporation by the constant KEV AP .

3. Run the SWCM on the perturbed weather scenarios to forecast annual consumption.

4. Calculate the average percentage difference between consumption forecasts based

on original weather scenarios and the consumption forecasts based on perturbed

weather scenarios.

Model sensitivity to changes in precipitation, temperature and evaporation are listed

in Tables 15, 16 and 17 respectively and to changes in all weather variables in Table 18.

Bubble plots are presented in Figure 7.

Note that model sensitivity is approximately linear in changes to weather data. For

example, the sum of consumption forecasts changes due to a 1◦C increase at each station

is approximately equal to the consumption forecast change due to a 1◦C increase at all

stations. Similarly with changes to precipitation and evaporation. However, the con-

sumption forecast change due to a 1◦C increase in temperature is greater than twice the
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Figure 6: Plots of average annual single dwelling consumption for financial years 2011/12
to 2015/16: (a) plot of actual consumption and the forecast consumption (b) plot of
forecast error and average of average annual maximum temperatures across the 12 weather
stations listed in Table 3.
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consumption forecast change due to a 0.5◦C increase. This is due to nonlinear effect of an

increase in temperature on the number of days greater than 30◦C. Similar nonlinearities

are seen with increases in precipitation, but not with evaporation. Note that the effect of

a 1◦C increase in temperature on the number of days greater than 30◦C may be different

for each scenario. Similarly for the number of days with precipitation greater than 2mm.

The combined effect of a KPRE = (1.50, 0.60) change in precipitation, a KTMAX =

(−1.0, 1.0) change in temperature and a KEV AP = (0.90, 1.10) change in evaporation gives

a range of about 6.3% in consumption forecasts. This range of weather variable values is

slightly less than that seen in the AWAP (1960-2015) data.

The combined effect of a KPRE = (2, 00, 0.40) change in precipitation, a KTMAX =

(−1.5, 1.5) change in temperature and a KEV AP = (0.80, 1.20) change in evaporation gives

a range of about 11.2% in consumption forecasts. This range of weather variable values

is similar to that seen in the weather scenarios.

Note that in realistic weather scenarios, there is not perfect intersite or intervariable

correlation between the weather variables. Thus it is very unlikely we would see a doubling

of precipitation at every weather station in the same year we see a 1.5◦C decrease in

maximum temperature at every weather station and a 20% decrease in evaporation at

every weather station. Prior to this investigation, it was expected that the range of

weather effects on actual consumption was about 10%.

5.4 Perturbation of weather scenario standard deviations

In this section we make various perturbations to the standard deviations of some of the

weather scenarios generated in Section 4, run the SWCM on the perturbed weather sce-

narios and calculated the resulting change to consumption forecasts. These consumption

forecast changes are a measure of the sensitivity of the SWCM model to weather changes.

Estimations of model sensitivity to perturbation of weather scenario standard devia-

tions were calculated as follows:

1. Use model to forecast annual consumption based on 100 different weather scenarios

for each year in the period 2015-2025 (11 years).
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Weather Station 0.40 0.60 0.80 1.20 1.50 2.00
Albion Park 0.0817 0.0480 0.0225 -0.0170 -0.0385 -0.0690
Bellambi 0.0941 0.0538 0.0238 -0.0213 -0.0474 -0.0827
Camden 0.1014 0.0591 0.0257 -0.0219 -0.0476 -0.0810
Holsworthy 0.1802 0.1010 0.0455 -0.0392 -0.0879 -0.1494
Katoomba 0.0788 0.0449 0.0194 -0.0162 -0.0356 -0.0622
Penrith 0.1129 0.0647 0.0283 -0.0256 -0.0576 -0.1012
Prospect 0.2882 0.1748 0.0816 -0.0714 -0.1702 -0.3140
Richmond 0.1038 0.0585 0.0255 -0.0229 -0.0506 -0.0897
Riverview 0.0366 0.0244 0.0122 -0.0122 -0.0305 -0.0609
Springwood 0.0998 0.0574 0.0249 -0.0207 -0.0472 -0.0835
Sydney Airport 0.2825 0.1636 0.0749 -0.0676 -0.1514 -0.2676
Terrey Hills 0.1916 0.1077 0.0480 -0.0394 -0.0904 -0.1612
All Stations 1.6694 0.9638 0.4334 -0.3745 -0.8506 -1.5090

Table 15: Forecast percentage change in consumption due to a uniform change in precip-
itation at each weather station.

Weather Station −1.5◦C −1.0◦C −0.5◦C 0.5◦C 1.0◦C 1.5◦C
Albion Park -0.0442 -0.0310 -0.0164 0.0186 0.0403 0.0625
Bellambi -0.0531 -0.0373 -0.0194 0.0222 0.0462 0.0721
Camden -0.1114 -0.0768 -0.0399 0.0390 0.0851 0.1347
Holsworthy -0.1486 -0.1048 -0.0566 0.0573 0.1204 0.1880
Katoomba -0.0271 -0.0192 -0.0101 0.0109 0.0223 0.0357
Penrith -0.1231 -0.0850 -0.0435 0.0479 0.0993 0.1538
Prospect -0.2898 -0.1985 -0.1022 0.1105 0.2239 0.3442
Richmond -0.1147 -0.0780 -0.0399 0.0440 0.0906 0.1405
Riverview -0.0676 -0.0451 -0.0226 0.0226 0.0452 0.0678
Springwood -0.0892 -0.0618 -0.0302 0.0340 0.0713 0.1092
Sydney Airport -0.2128 -0.1441 -0.0754 0.0823 0.1695 0.2644
Terrey Hills -0.1222 -0.0873 -0.0488 0.0501 0.1063 0.1635
All Stations -1.3910 -0.9627 -0.4994 0.5416 1.1290 1.7576

Table 16: Forecast percentage change in consumption due to a uniform change to tem-
perature at each weather station.

Weather Station 0.80 0.90 0.95 1.05 1.10 1.20
Prospect -0.7964 -0.3989 -0.1996 0.2000 0.4004 0.8022
Richmond -0.2708 -0.1358 -0.0680 0.0682 0.1366 0.2739
Riverview -0.5182 -0.2601 -0.1303 0.1308 0.2622 0.5265
Sydney Airport -0.8062 -0.4043 -0.2024 0.2030 0.4067 0.8159
All Stations -2.3652 -1.1924 -0.5987 0.6038 1.2127 2.4462

Table 17: Forecast percentage change in consumption due to a uniform change in evapo-
ration at each weather station.
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(a) (b)

(c)

Figure 7: Bubble plot of percentage change in consumption due to a uniform change
in: (a) Precipitation KPRE = 0.60, (b) Maximum Temperature KTMAX = 1.0 and (c)
Evaporation KEV AP = 1.10.
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Precipitation Temperature Evaporation Consumption
(1.20, 0.80) (−0.5◦C,+0.5◦C) (0.95, 1.05) (−1.4639, 1.5893)
(1.50, 0.60) (−1.0◦C,+1.0◦C) (0.90, 1.10) (−2.9697, 3.3529)
(2.00, 0.40) (−1.5◦C,+1.5◦C) (0.80, 1.20) (−5.1591, 6.0245)

Table 18: Forecast percentage change in consumption due to the combined effect of uni-
form changes in all weather variables at all weather stations.

2. For each weather station, s, and each year, y, in a weather scenario calculate the

average value of the weather variable, W̄Initial (s, y). Calculate the average value of

those yearly averages, Ms = Y −1
∑

y W̄Initial (s, y), where Y is the number of years

in the weather scenario.

3. Calculate perturbed yearly averages for the weather variables at each weather station

using

W̄Perturbed (s, y) = W̄Initial (s, y) + (KSD − 1) ∗
(
W̄Initial (s, y)−Ms

)
(22)

where KSD is the factor by which the weather scenario standard deviations are to

be perturbed.

4. For each weather station, s, and each year, y in a weather scenario modify each days

weather data by either multiplying it by a constant (precipitation and evaporation)

or adding it to a constant (maximum temperature), so that the yearly average equals

the perturbed yearly average, W̄Perturbed (s, y).

5. Run the SWCM on the perturbed weather scenarios to forecast annual consumption.

6. Calculate the average range of consumption forecasts for each financial year from

the perturbed weather scenarios.

Perturbation of the weather scenario standard deviations affects the range of total con-

sumption forecasts while having little effect on the median consumption forecasts, (Table

19). In each case, increasing the standard deviation of the weather variable increases the

range of total consumption forecasts.
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KSD

Range 0.6 0.8 1.0 1.2 1.5
Precipitation 6.96% 7.17% 7.39% 7.60% 7.98%
Temperature 6.90% 7.14% 7.39% 7.64% 8.04%
Evaporation 6.71% 7.05% 7.39% 7.73% 8.25%
All Weather Variables 5.83% 6.58% 7.39% 8.21% 9.53%

Median (GL) 0.6 0.8 1.0 1.2 1.5
Precipitation 482.9 483.1 483.2 483.3 483.4
Temperature 483.0 483.1 483.2 483.2 483.3
Evaporation 483.1 483.1 483.2 483.2 483.2
All Weather Variables 482.7 482.9 483.2 483.3 483.5

Table 19: Range and median of total consumption forecasts from weather scenarios with
perturbed standard deviation.

Note that increasing the standard deviation of the PRE weather variable affects both

the mean and standard deviation of GT2MM weather variable. For example, increasing

the standard deviation of the PRE weather variable by a factor of 1.5 decreases the

mean and increases the standard deviation of the GT2MM weather variable by factors

of 0.98 and 1.28 respectively. The decrease of the of the mean of the GT2MM weather

variable is explained by the fact that for all weather stations the mean daily rainfall on

”wet” days is more than 2mm. Similarly, increasing the standard deviation of the TMAX

weather variable affects both the mean and standard deviation of the GT30C weather

variable. For example, increasing the standard deviation of the TMAX weather variable

by a factor of 1.5 increases the mean and increases the standard deviation of the GT30C

weather variable by factors of 1.01 and 1.26 respectively. The increase of the mean of the

GT30C weather variable is explained by the fact that for all weather stations the mean

maximum temperature is less than 30◦C.

Other perturbations to the weather scenarios are possible, but are not investigated

here. For example, one can perturb the sequence of ”wet” or hot days so that they are

more likely to occur consecutively without changing the mean or standard deviation of

the PRE, GT2MM, TMAX and GT30C weather variables. Such perturbations would be

detected for ”wet” days by the RX5Day, CDD and CWD climate extremes indices and for

hot days, by the HWN, HWD, HWF, HWA, HWM and TX5Day climate extreme indices,

(Table 21). Although such perturbations to actual weather may have an effect on actual
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consumption, they would have no effect on the SWCM forecast consumption.

6 Spatial Interpolation of Weather Data

In order to forecast water consumption for a property, the SWCM requires values for the

weather variables, PRE, GT2MM, TMAX, GT30C and EVAP for that property which

can be entered into the model equation, eq (1). However, SWCM only has weather

information at each of the weather stations listed in Table 3, and so to obtain weather

information at each property we must spatially interpolate the weather information from

the weather stations.

To calculate the spatial interpolation of weather information at each property from

the weather information at the weather stations, the SWCM uses a method known as

inverse distance weighting (IDW). Let Xj (q) denote observed value of a weather variable

at weather station j for quarter q. The weighted average estimate, Yi (q), of the weather

variable at property i for quarter q is calculated as follows:

Yi (q) =
∑
j

w
(k)
i,j Xj (q) (23)

where the weight w
(k)
i,j , given by

w
(k)
i,j =

1/dki,j∑
j 1/dki,j

(24)

is proportional to the inverse of the distance dki,j raised to the power k between the

weather station and the property. Hereafter, we refer to the IDW interpolation method

with k = 1 as IDW1 and the IDW interpolation method with k = 2 as IDW2. In the

SWCM, the IDW1 method is used. Occasionally, there will be some data missing from

one of the weather stations in Table 3. If there is less than 70 days of data from a weather

station for a quarter, then all data from that weather station for that quarter is ignored

in calculating the weights.

Given the varied topography in the Sydney Region, it is unlikely that the spatial in-
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terpolation of weather data can be accurately modelled using only the distance from 12

weather stations. In Figure 8, the correlation of the yearly maximum temperature aver-

ages (AWAP1960-2015) at the grid points closest to the 12 weather stations listed in Table

3. Katoomba and Sydney Airport (83.29km) are separated by approximately the same

distance as Bellambi and Terrey Hills (77.38km) but the yearly maximum temperature

correlation between Katoomba and Sydney Airport (0.940) is much less than the corre-

lation between Bellambi and Terrey Hills (0.979). These differences may be explained by

the fact that Sydney Airport, Bellambi and Terrey Hills are all near the coast, whereas

Katoomba is in the mountains approximately 1,000m above sea level.

Many other spatial interpolation methods have been proposed. These methods can

be broady classified into four different groups: local interpolation methods, global meth-

ods, geostatistical methods and mixed methods (Vicente-Serrano et al. (2003)). Local

interpolation methods include IDW as well as other interpolation methods such as splines

(Hutchinson (1995)). Global methods use a regression model for the weather variables at

an unknown location. Explanatory variables for the regression model may include lati-

tude, longitude, elevation and the distance from large bodies of water, (Ninyerola et al.

(2000)). Geostatistical methods include various types of kriging (Stein (1999)). Kriging

is a linear model similar to IDW, where the statistical properties of the weather station

data rather than the distance between the weather stations are used to calculate the linear

model weights, (Hudson and Wackernagel (1994)). Mixed methods are various combina-

tions of these and other methods. The gradient plus inverse distance squared (GIDS)

model combines regression and IDW methods (Nalder and Wein (1998)). Splines can

be used to model the mean surface and combined with kriging to model the residuals

(Haylock et al. (2008)). Kriging can be combined with GAMs in what are referred to

as geoadditive models (Aalto et al. (2013)). A number of studies have been published

which compare the quality of various spatial interpolation methods when used on weather

data, without reaching a concensus on the optimality of any one method, (Price et al.

(2000), Jarvis and Stuart (2001), Vicente-Serrano et al. (2003), Stahl et al. (2006)). A

mixed method is used for the AWAP gridded data set, with splines used to model monthly
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Figure 8: Plot of the correlation between yearly maximum temperatures (AWAP, 1960-
2015) and the separation distance for each pair of weather stations. Note that Katoomba
and Sydney Airport are nearly the same distance apart as Bellambi and Terrey Hills, but
have very different correlations between their yearly maximum temperatures.
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Station Station Max Rainfall Pan Num. Days Num. Days
No. Name Temp Evap > 30◦C > 2mm
67108 Badgerys Creek Y Y Y Y
66062 Observatory Hill Y Y Y Y
66124 Paramatta North Y Y Y Y

Table 20: List of three additional weather stations from which observations used to cal-
culate weather variable estimates for the Sydney Water consumption model.

averages and the Barnes successive correction method to model residuals, (Jones et al.

(2009)).

In this section, we compare the IDW1, IDW2 and AWAP interpolation methods for the

PRE, GT2MM, TMAX and GT30C weather variables at AWAP grid points in the Sydney

Region. We do not attempt any cross-validation analysis to compare interpolated data

with observed data. The EVAP weather variable is not considered here, as evaporation

is not included in the AWAP data. We also consider the impact of the addition of three

new weather stations (Table 20) to the SWCM weather stations listed in Table 3.

The AWAP grid points chosen for this analysis are from the latitudes between−34.6◦ and −

33.4◦ (25 points) and the longitudes 150.2◦ and 151.4◦ (25 points). This covers the entire

Sydney Water distribution system and includes some areas which are outside the Sydney

Water distribution system. Data is used from the period 2005-2014, which gives a total

of 40 quarters.

For each quarter, q, the value of each weather variable is calculated at each AWAP

grid point, x, by five different methods:

1. Weighted averages of Table 3 weather station observations using IDW1 spatial in-

terpolation. We use PRES12,IDW1 (x, q) to denote the daily precipitation estimate

using this method with similar notation for the other weather variables.

2. Weighted averages of Table 3 weather station observations using IDW2 spatial in-

terpolation. We use PRES12,IDW2 (x, q) to denote the daily precipitation estimate

using this method with similar notation for the other weather variables.

3. Weighted averages of Tables 3 and 20 weather station observations using IDW1

spatial interpolation. We use PRES15,IDW1 (x, q) to denote the daily precipitation
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estimate using this method with similar notation for the other weather variables.

4. Weighted averages of Tables 3 and 20 weather station observations using IDW2

spatial interpolation. We use PRES15,IDW2 (x, q) to denote the daily precipitation

estimate using this method with similar notation for the other weather variables.

5. AWAP data for the grid point. We use PREAWAP (x, q) to denote the daily pre-

cipitation estimate using this method with similar notation for the other weather

variables.

In order to assess to difference between the various weighted average estimates and

the AWAP estimates the following statistics were defined for each AWAP grid point, x,

MPRE;S12,D1 (x) =
1

Q

∑
q

|PRES12,D1 (x, q)− PREAWAP (x, q)| (25)

MPRE;S12,D2 (x) =
1

Q

∑
q

|PRES12,D2 (x, q)− PREAWAP (x, q)| (26)

MPRE;S15,D1 (x) =
1

Q

∑
q

|PRES15,D1 (x, q)− PREAWAP (x, q)| (27)

MPRE;S15,D2 (x) =
1

Q

∑
q

|PRES15,D2 (x, q)− PREAWAP (x, q)| (28)

where Q = 40 is the number of quarters estimated. Similar statistics are defined for the

other weather variables. These statistics do not measure the sign of the difference between

the various weighted average estimates and the AWAP estimates, nor do they distinguish

between different times of the year.

Bubble plots which highlight the differences between each of the above methods are

provided in Figures 9, 10, 11 and 12 for the weather variables, PRE, GT2MM, TMAX

and GT30C respectively.

The IDW1 interpolation method assigns more weight to faraway weather stations and

less weight to nearby weather stations than the IDW2 interpolation method. In general,

the IDW2 estimates are closer to the AWAP estimates than the IDW1 estimates, but

this is not always the case. An illustration of how the choice of weights affects weighted

average estimates can be seen in the TMAX estimates around Katoomba (Figure 11(e)).
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(a) MPRE;S12,D1 (b) MPRE;S12,D2

(c) MPRE;S15,D1 (d) MPRE;S15,D2

(e) MPRE;S12,D1 - MPRE;S12,D2 (f) MPRE;S12,D1 - MPRE;S15,D1

Figure 9: Bubble plots of the difference between the AWAP PRE estimates and the IDW1
PRE and the IDW2 PRE estimates using observations from 12 weather stations and from
15 weather stations.
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(a) MGT2MM;S12,D1 (b) MGT2MM;S12,D2

(c) MGT2MM;S15,D1 (d) MGT2MM;S15,D2

(e) MGT2MM;S12,D1 - MGT2MM;S12,D2 (f) MGT2MM;S12,D1 - MGT2MM;S15,D1

Figure 10: Bubble plots of the difference between the AWAP GT2MM estimates and the
IDW1 GT2MM and the IDW2 GT2MM estimates using observations from 12 weather
stations and from 15 weather stations.
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(a) MTMAX;S12,D1 (b) MTMAX;S12,D2

(c) MTMAX;S15,D1 (d) MTMAX;S15,D2

(e) MTMAX;S12,D1 - MTMAX;S12,D2 (f) MTMAX;S12,D1 - MTMAX;S15,D1

Figure 11: Bubble plots of the difference between the AWAP TMAX estimates and the
IDW1 TMAX and the IDW2 TMAX estimates using observations from 12 weather sta-
tions and from 15 weather stations.
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(a) MGT30C;S12,D1 (b) MGT30C;S12,D2

(c) MGT30C;S15,D1 (d) MGT30C;S15,D2

(e) MGT30C;S12,D1 - MGT30C;S12,D2 (f) MGT30C;S12,D1 - MGT30C;S15,D1

Figure 12: Bubble plots of the difference between the AWAP GT30C estimates and the
IDW1 GT30C and the IDW2 GT30C estimates using observations from 12 weather sta-
tions and from 15 weather stations.
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Northwest of Katoomba, near Mt Victoria, and east of Katoomba, near Wentworth Falls,

the climate is similar to that of Katoomba and decreasing the weights of the Richmond,

Penrith weather stations improves the accuracy of weighted average estimates. However,

south of Katoomba in the Jamison Valley, the climate is quite different to that of Ka-

toomba and increasing the weights of Camden Airport, Penrith weather stations improves

the accuracy of weighted average estimates.

In general the inclusion of observations from additional weather stations moves the

IDW1 estimates closer to the AWAP estimates. For the three additional weather stations

chosen, the magnitude of the change tends to be less than that the magnitude of the

change between the IDW1 and IDW2 estimates and is often confined to regions close to

the additional weather stations. In Figure 9(f), the precipitation estimates are closer to

the AWAP estimates in regions close to each of the additional weather stations. However,

in Figure 11(f) there is a modest change in average maximum temperature estimates

across a wide area. Northwest of Katoomba, near Mt Victoria, there is a change away

from AWAP estimates arising from the inclusion, in particular, of observations from the

Badgerys Creek weather station.

For almost all of the Sydney Water area of operations, the average differences between

the IDW1 estimate using 12 weather stations and the AWAP estimate of:

• average daily precipitation per quarter is less than 0.6mm

• number of 2mm days per quarter is less than 5 days

• average maximum temperature per quarter is less than 1.2◦C

• number of 30◦C days per quarter is less than 4 days

Areas where the differences are greatest are:

• Blue mountains area between Katoomba and Springwood,

• The Illawarra, north of and inland from Bellambi, and the Royal National Park,

• The northern beaches and the Ku-ring-gai Chase National Park.
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Some of these areas are lightly populated and so may have little impact on consumption

forecasts.

For most regions during the AMJ and JAS quarters, the values of GT30C weather

variable is close to zero and there is little difference between the IDW1 and AWAP esti-

mates.

The Sydney Water consumption model does not use the raw weather variable estimates

as explanatory variables, but rather the difference between those estimates and their long

term averages. It is possible that even if an estimate is inaccurate, so long as it is always

inaccurate by the same amount it still serves the model well. Studies on the accuracy of

AWAP data can be found in King et al. (2013) and Contractor et al. (2015).

7 Climate Extremes Indices

Included as explanatory variables in the SWCM are five weather variables used to cap-

ture the properties of the weather over the period of interest (Table 3). In this section,

we investigate some additional weather variables which also could have been used in the

SWCM. Some of the additional weather variables included in this investigation were taken

from the climate extremes indices defined by the Expert Team on Climate Change De-

tection and Indices (ETCCDI) and the Expert Team on Sector-specific Climate Indices

(ET-SCI), (ETCCDI (2017), ET-SCI (2017)). All of the ETCCDI and ET-SCI climate

extremes indices are functions of maximum, minimum temperature and/or precipitation,

none are functions of pan evaporation.

The heat wave indices, HWN, HWD and HWF are defined in Perkins and Alexander

(2012), where three different definitions of a heat wave were suggested. For this investiga-

tion, we use the definition based on the CTX90pct threshold. The CTX90pct threshold,

calculated for each calendar day, is the 90th percentile of maximum temperatures in a

15-day window centered on the day in question, over the period 1961-1990. A heat wave

occurs if this threshold is exceeded for three or more consecutive days.

Not all of the ETCCDI and ET-SCI climate extreme indices are relevant to the Sydney

region climate. For example, the ETCCDI index ID (Icing Days: Number of days when
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the maximum temperature is less than 0◦C) is likely to be zero or very close to zero, almost

every year throughout the Sydney region. The climate extremes indices chosen for this

investigation are listed in Table 21. Each of the indices in Table 21 can be calculated either

monthly, quarterly or annually. Note that four of the five SWCM weather variables have

equivalent climate extreme indices included in Table 21: PRE is equivalent to PRCTOT;

GT2MM is equivalent to R2MM; TMAX is equivalent to TXM and GT30C is equivalent

to SU30.

To examine the relationship between climate extreme indices and water consumption,

we plotted the average actual and predicted consumption for single dwellings against

the climate extreme indices for over the period 2011/12 to 2015/16, (Figures 13 and

14 and Table 22). Single dwelling consumption tends to be more sensitive to weather

than consumption in other property types, due to the relatively larger outdoor water use

(gardens, pools, etc).

The climate extremes indices having the highest positive correlation with actual av-

erage single dwelling consumption are: TXM (0.981), SU28 (0.930), DTR (0.930), SU30

(0.905) and TX90P (0.890). The climate extremes indices having the highest negative cor-

relation with actual average single dwelling consumption are: TX10P (-0.986), R10MM

(-0.941), R20MM (-0.938), PRCTOT (-0.898) and R2MM (-0.892). The indices equiva-

lent to SWCM weather variables (PRCTOT, R2MM, TXM and SU30) are each strongly

correlated with the actual average single dwelling consumption. Other climate extremes

indicies are also strongly correlated with actual average single dwelling consumption and

may be worth considering for inclusion in any future release of the SWCM. Note that the

correlations listed above are calculated from only five pairs of data points and so are very

sensitive to changes in the data.

Wherever there is a strong correlation between a climate extreme index and the actual

average single dwelling consumption, there is also a strong correlation of the opposite sign

between the climate extreme index and the average single dwelling consumption prediction

error. This is consistent with the proposition that the SWCM tends to underestimate the

impact of weather on consumption, (Section 5.2).
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Label Description
FD The number of days when the daily minimum temperature was < 0◦C.
SUn The number days when the daily maximum temperature was > n◦C.
TXX The maximum of the daily maximum temperatures.
TNX The maximum of the daily minimum temperatures.
TXN The minimum of the daily maximum temperatures.
TNN The minimum of the daily minimum temperatures.
TXM The mean of the daily maximum temperatures.
TNM The mean of the daily minimum temperatures.
TR The number of days when the daily minimum temperature was > 20◦C.
DTR The mean of the differences between the daily maximum and daily

minimum temperatures.
TX10P The number of days when the daily maximum temperature is less than

the 10th percentile of the 1961-1990 base period. A different percentile
is calculated for each month.

TN10P The number of days when the daily minimum temperature is less than
the 10th percentile of the 1961-1990 base period. A different percentile
is calculated for each month.

TX90P The number of days when the daily maximum temperature is greater
than the 90th percentile of the 1961-1990 base period. A different
percentile is calculated for each month.

TN90P The number of days when the daily minimum temperature is greater
than the 90th percentile of the 1961-1990 base period. A different
percentile is calculated for each month.

HWN The number of heat waves.
HWD The length of the longest heat wave.
HWF Number of heat wave days.
TX5Day Maximum of average of maximum temperatures over a period of 5

consecutive days.
RX1Day The maximum precipitation amount on a single day.
RX5Day The maximum precipitation amount over a period of 5 consecutive days.
SDII The average precipitation amount on days when the precipitation

amount was greater than 1 mm.
PRCTOT The total precipitation.
CDD The maximum number of consecutive days when the precipitation

amount of each day was less than 1 mm.
CWD The maximum number of consecutive days when the precipitation

amount of each day was greater than 1 mm.
RnMM The number of days when the precipitation amount was greater than n

mm.

Table 21: Climate extremes indices definitions.
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Index FY Q1 Q2 Q3 Q4
SU25 0.890 0.422 0.724 0.927 0.700
SU28 0.930 0.744 0.807 0.923 0.879
SU30 0.905 0.756 0.837 0.878 0.765
SU32 0.859 0.499 0.784 0.880 0.809
TR 0.306 0.000 0.659 0.376 0.000
TXX 0.368 0.290 0.180 0.448 0.814
TNX 0.030 0.668 0.604 -0.367 0.363
TXN 0.538 0.641 0.452 0.814 -0.373
TNN 0.786 0.911 -0.274 0.735 -0.077
TXM 0.981 0.719 0.732 0.924 0.896
TNM 0.656 0.445 -0.083 0.818 0.956
TX10p -0.986 -0.665 -0.652 -0.840 -0.781
TN10p -0.714 -0.275 0.051 -0.748 -0.703
TX90p 0.890 0.559 0.885 0.823 0.952
TN90p 0.508 0.581 0.017 0.446 0.936
DTR 0.930 0.622 0.988 0.969 0.397
HWN 0.703 0.556 0.111 0.739 0.882
HWD 0.460 -0.087 0.420 0.857 0.417
HWF 0.658 0.372 0.003 0.805 0.708
TX5Day 0.841 0.515 0.470 0.912 0.715
RX1Day -0.022 -0.330 -0.219 -0.063 0.348
RX5Day -0.140 -0.492 -0.443 0.073 0.340
SDII -0.623 -0.236 0.229 0.013 0.296
R1MM -0.885 -0.593 -0.979 -0.903 -0.490
R2MM -0.892 -0.542 -0.903 -0.899 -0.495
R5MM -0.898 -0.613 -0.767 -0.886 -0.535
R10MM -0.941 -0.501 -0.519 -0.778 -0.496
CDD 0.727 0.715 0.823 0.765 -0.163
CWD -0.493 -0.503 -0.334 -0.733 -0.372
PRCTOT -0.898 -0.551 -0.573 -0.776 -0.136

Table 22: Correlation of climate extreme indices and the average actual single dwelling
consumption. These correlations was calculated over the period 2011/12 to 2015/16 for
the entire financial year (FY) and for individual quarters Q1(JAS), Q2(OND), Q3(JFM)
and Q4(AMJ).
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The correlation between climate extremes indices and average single dwelling con-

sumption was also calculated for individual quarters as well as for the entire financial

year, (22). For the high temperature quarters, Q2 and Q3, the climate extremes index

with the highest positive correlation was DTR, (0.988 and 0.969 respectively) and the

climate extremes index with the highest negative correlation was RX1MM, (-0.979 and

-0.903) respectively).
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Figure 13: Plot of average single dwelling actual and predicted consumption for the
financial years 2011/12 - 2015/16 as a function of the climate extremes indices SU25,
SU28, SU30, SU32, TR, TXX, TNX, TXN, TNN, TXM, TNM, TX10P, TN10P, TX90P
and TN90P calculated from AWAP data.
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Figure 14: Plot of average single dwelling actual and predicted consumption for the
financial years 2011/12 - 2015/16 as a function of the climate extremes indices DTR,
HWN, HWD, HWF, TX5Day, RX1Day, RX5Day, SDII, R1MM, R2MM, R5MM, R10MM,
CDD, CWD and PRCTOT calculated from AWAP data.
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8 Recommendations and Suggestions for Future Work

We make the following recommendations and suggestions for future work.

• Weather data at each property is estimated for the SWCM through the interpolation

of observations from 12 BoM weather stations. The accuracy of these estimations

may be improved through the inclusion of additional weather stations and/or the

choice of a better interpolation method. Alternatively, estimations could be taken

directly from a gridded data set such as AWAP.

• The NSW/ACT regional climate modelling project (NARCliM) is a regional climate

modelling project that has generated an ensemble of 12 future climate projections for

the region based on various global and regional climate models, (Evans et al. (2014)).

A set of weather scenarios, similar to those generated as part of this investigation,

could be generated from each of the NARCliM projections and be used to assess

the impact of the underlying model assumptions on consumption forecasts.

• The use of quarterly weather and consumption data may obscure the impact of

shorter term weather events on water consumption. Modelling of daily water con-

sumption may reveal additional significant relationships with weather and form the

basis for improved forecasts in the future.

• Sydney Water should consider a fundamental review of SWCM to examine the

model structure. This would enable other climate extremes indices to be examined

for their impact on water consumption.
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